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The effect of the compressibility of the fluid on the parameters of a hydraulic gun is evaluated. The
quasi-one-dimensional motion of an ideal compressible fluid is described by equations of nonstation-
ary gas dynamics, which are solved numerically according to the algorithm proposed. The numerical
solution for a compressible fluid is compared with an analytical solution for an incompressible fluid
and with an experiment, which are performed by other authors. From an analysis of the results con-
clusions are drawn that the compressibility of the fluid can be disregarded. It is proposed that the
Mach number be used as a criterion for assessing account for the compressibility of the fluid.

For the production of high-speed pulsed jets of a fluid, a pulsed water jet (monitor) and a hydraulic
gun are widely used. The first designs of a pulsed water jet and a hydraulic gun were developed and manu-
factured at the Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences [1].
It is there that experimental and theoretical investigations of these installations were started, too [2]. The the-
ory of the installations was developed within the framework of the model of an ideal incompressible fluid.
Further experimental and theoretical investigations of hydropulsed installations [3] showed that disregarding
the compressibility of the fluid may lead to significant errors. Certain special features of the steady motion of
a compressible fluid are described in [4]. In [5], the flow of a free water charge of incompressible fluid into
a narrowing nozzle of a hydraulic gun of arbitrary profile is considered analytically. In [6], a similar problem
is solved numerically for a compressible fluid and a comparison with an incompressible fluid is made [5].
Experimental investigations of a hydraulic gun and a comparison with the calculations of [5, 6] are performed
in [7]. In the present work, the conditions for disregarding fluid compressibility are evaluated in detail using
different well-tested numerical methods.

The main parts of a hydraulic gun are a cylindrical barrel 1 and a narrowing nozzle 3 (Fig. 1). Let
the water charge 2, moving in the barrel with the velocity U0, reach the inlet to the nozzle and begin to flow
into it at the initial instant of time. We will consider the fluid to be ideal and compressible and the profile
of the nozzle to be assigned and smoothly changing; the radial flow of the fluid is disregarded. We will
denote the inlet and outlet cross sections of the nozzle by Fin and Fe and its length by Le and bring the origin
of coordinates into coincidence with the rear edge of the water charge at the initial instant of time. In the
adopted formulation, the quasi-one-dimensional motion of the ideal compressible fluid in the hydraulic gun is
described by the system of equations of nonstationary gas dynamics
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p = B [(ρ ⁄ ρ0)
n − 1] . (1)

The initial and boundary conditions for system (1) are as follows:

u (0, x) = U0 ,   p (0, x) = 0 ,   ρ (0, x) = ρ0 ;   0 ≤ x ≤ L , (2)

p (t, xr) = 0 ,   p (t, xfr) = 0 . (3)

The problem formulated was solved numerically by the Godunov method [3, 8] and a grid charac-
teristic method [9] developed for calculating quasi-one-dimensional flows in a hydraulic gun. The calculations
were performed on grids of 256 and 512 cells. In the process of the calculations, fulfillment of the mass and
energy balances was monitored. In the calculation on the fine grids, the mass disbalance did not exceed
0.05%, and that of the energy was no larger than 0.1%.

Let us briefly describe the difference scheme that was used in this work. We write the equations of
quasi-one-dimensional is entropic motion of the fluid in the hydraulic gun in a Lagrangian representation in
term of Riemann invariants [10]
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In Eqs. (4) and (5), the time derivative is total and is taken along the particle’s trajectory.
We carry out the difference approximation of Eqs. (4) and (5) on a  nonuniform moving Lagrangian

grid whose nodes move together with the fluid. We mark the coordinates of the nodes and the parameters of
the flow at them by integer indices that correspond to the numbers of the nodes: i = 1, 2, ..., N, by subscripts
for the instant of time t and by superscripts after the time step ∆t. The space derivatives will be approximated
by left-hand or right-hand differences depending on the segment from which the values of the corresponding
invariant are brought to the computational joint with the coordinate xi: from the segment [xi−1, xi] or the
segment [xi, xi+1]. We average the coefficients of the derivatives and the free terms in the equations over the
values of the parameters at the nodes of the required interval. We will mark them by half-integer indices:
i ± 1 ⁄ 2.

We will write the difference approximation of Eqs. (4) and (5) in the form

Fig. 1. Scheme of the hydraulic gun: 1) barrel; 2) water charge; 3) nozzle.
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yi−1 ⁄ 2 = (yi−1 + yi) ⁄ 2 ,   ∆xi−1 ⁄ 2 = xi − xi−1 .

By replacing the invariants with their expressions and solving the system of equations for ui and ai, we find
the parameters of the flow after a time step
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The coordinates of the grid nodes after the time step are determined from the formula

xi = xi + 
ui + ui

2
 ∆t . (12)

The boundary points are calculated using the corresponding boundary conditions. For example, point
N at the leading edge of the fluid, where the value of the velocity of sound is assigned, is calculated from
the formulas

aN = a0 ,   uN = uN − DN−1 ⁄ 2∆t ,   xN = xN + 
uN + uN

2
 ∆t . (13)

The quantity DN−1 ⁄ 2 is determined by expression (10).
The time step of the difference scheme is limited by the condition of Courant stability [10]
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Test calculations showed sufficient efficiency and reliability of the considered difference scheme in
solving a wide range of problems of nonstationary motion of a fluid. It can be noted that in terms of the
organization of the algorithm and its speed of response the scheme is more efficient than the Godunov
method, which has been widely used in numerical solution of problems of gas dynamics [11]. The scheme is
not conservative, but the mass and energy balances, which were monitored in the calculations, were fulfilled
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with high accuracy at all stages of the process. One can mention among the scheme’s drawbacks the neces-
sity of singling out the positions of strong discontinuities and the possibility of strong deformation of the
difference grid. In the presence of large velocity gradients, Lagrangian cells can be deformed significantly,
which can lead to a loss of accuracy of the calculations. In the calculations, when the step of the cell ex-
ceeded the maximum, it was subdivided into two cells.

Results of calculations are given below for a hydraulic gun whose data were taken from [5]: the ratio
of the length of the water charge to the length of the nozzle kL = 1/3.07; the ratio of the areas of the inlet
and outlet cross sections of the nozzle kF = 100. All variables in the formulas and on the graphs are dimen-
sionless. For simplicity, the same notation as for dimensional quantities is kept for them. When the occasion
requires, the dimensions of the quantities are specified additionally. The selected scales are: the length of the
water charge L, the area of the inlet cross section of the nozzle Fin, the initial velocity of the fluid U0, the
time L ⁄ U0, and the velocity head ρU0

2 ⁄ 2. The profile of the nozzle changed by the exponential law

 f (x) = exp (− a1 (x − 1)) ,

where a1 = 1.5. In [5], analytical expressions are obtained for the distribution of velocity and pressure along
the coordinate in relation to the position of the leading edge. At the end of the inflow these expressions have
the form

u (x) = ure exp (a1 (x − 1)) , (15)
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Here

Fig. 2. Distribution of pressure (a) and velocity (b) along the coordinate
x at the end of inflow for different values of the initial velocity: 1) in-
compressible fluid; 2–6) compressible fluid for an initial velocity of 25,
50, 150, 300, and 500 m/sec; dark points, calculation according to the
Godunov method; light points, weakly compressible fluid. All the quan-
tities are dimensionless.
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For the maximum values of the velocity of outflow um and the pressure pm approximate expressions
are obtained for the case where the ratio of the areas of the inlet and outlet cross sections of the nozzle is
large (kF >> 1):

um = √ kFkL ln kF  ,   pm = um
2  ⁄ 4 . (17)

Figure 2 shows the distribution of pressure and velocity along the coordinate x at the end of the
fluid’s inflow into the nozzle. Curves 1 correspond to an incompressible fluid and are constructed from for-
mulas (5) and (4). Curves 2–6 are obtained in calculation of the flow of a compressible fluid according to the
above-described difference scheme for different initial velocities of the fluid equalb to 25, 50, 150, 300, and
500 m/sec, respectively. The dark points on the graph are used to mark a numerical solution performed by
the Godunov method for an initial velocity of 150 m/sec. As is seen, the coincidence of the results obtained
in calculations by different numerical methods is complete. However, the consumption of computer time in
the calculation by the grid-characteristic method is 4.5 times lower than by the Godunov method. 

In Table 1, for different values of the fluid’s initial velocity u0, we give: the maximum value of the
outflow velocity and the pressure for a compressible fluid um and pm, the Mach number M corresponding to
the maximum velocity um; the relative deviations of the maximum values of the velocity and the pressure
δu and δp in comparison with the parameters of the flow of an incompressible fluid.

For an incompressible fluid the dimensionless values of the maximum pressure and velocity of the
outflow do not depend on the initial velocity, and for this design of the hydraulic gun pm = 37.5 and um =
12.28. For a compressible fluid the parameters of the flow depend noticeably on the initial velocity U0, as
follows from the table. The compressibility of the fluid exerts a stronger influence on the distribution and the
maximum value of the pressure in the nozzle than on the distribution and the maximum value of the velocity.
Taking into account the compressibility of the fluid leads to a noticeable reduction in the pressure and veloc-
ity of the outflow. For a compressible fluid for different values of the initial velocity the maximum pressure
at the end of the inflow occurs in practically one and the same cross section with the coordinate xm ≈ 3.6. For
an incompressible fluid the coordinate that corresponds to the maximum value of the pressure is determined

by the approximate expression xm ≈ 1 + 
1
a1

 ln 
kF

2
 = 3.6 on condition that kF >> 1 . As is seen, the coincidence

of the results for the character of the distribution of pressure for different models of the fluid is good.
According to expressions (17), the maximum pressure pm of the incompressible fluid in the nozzle at

the end of the inflow exceeds the velocity head um
2  fourfold (we remind the reader that the quantities are

dimensionless). For a compressible fluid the maximum values of the pressure and the velocity are smaller
than for an incompressible fluid and depend strongly on the initial velocity of the water charge. However the
ratio of the maximum pressure to the velocity head is also close to four, which can readily be seen from the
last column of the table. A maximum difference of 10% is observed for an initial velocity of 150 m/sec.

In [5, 6], the results of calculations for an incompressible fluid and a compressible one are compared.
It is noted that the maximum difference in velocity is observed at the nozzle section and reaches 15%. The
maximum values of the pressure practically do not differ. In the calculations performed, the maximum values
of the pressure differ more than those of the velocity, which is in disagreement with the conclusions of [6].
For not very large values the pressure is proportional to the velocity squared. The error in the determination
of pressure in the linear approximation will be twice as large as the error in the determination of velocity,
i.e., it will be about 30%. This result agrees well with the data given in Table 1.

39



In [7], experimental investigations of a hydraulic gun are described and a comparison is made with
the results of the calculations of [5, 6]. In the experiments, high-speed photography of the jet was done and
its velocity was measured. The pressure inside the installation was not recorded. Based on the results of the
experiment the conclusion is drawn that the fluid’s compressibility can be disrefarded for jets with velocities
up to 1500 m/sec. It can be seen from the table that for a velocity of outflow of 1500 m/sec (the M number
≈ 1) the difference in velocities for a compressible fluid and an incompressible one is relatively small − about
14%. The pressures differ much more − by 32%. With increase in the fluid velocity this difference increases
even more. It can be noted that for the considered design of the hydraulic gun the theory of an incompress-
ible fluid provides satisfactory coincidence in the outfow velocity and poor coincidence in the maximum pres-
sure. The character of the flow, the distribution of the quantities in space, and the ratio of the characteristic
parameters for different models of the fluid coincide satisfactorily.

Calculations were done for other values of the ratio of the areas kF. The remaining geometric parame-
ters and the initial velocity of the fluid were not changed. As should have been expected, with decrease in
the area of the outlet cross section of the nozzle the maximum outflow velocity of the jet and the maximum
pressure in the nozzle increased. For example, when the area ratio increases 1.5-fold (kF = 150), the outflow
velocity of the jet increases by 20% and the pressure increases by 60%. For this variant the coincidence of
the results for an incompressible fluid and a compressible one is much poorer than for the variant considered
above.

The Mach number M calculated from the maximum outflow velocity can be used as a criterion for
permissibility to disregard the fluid’s compressibility. It can be seen from the table that for the Mach number
M = 0.38 the errors in determining the velocity and pressure amount to 3.3 and 10.5%, respectively, which
is quite acceptable for engineering calculations.

It is known that the lower the compressibility of a fluid, the higher the velocity of sound in it. For
an incompressible fluid the velocity of sound equals infinity. For ordinary water the velocity of sound at zero
pressure, according to the Tate equation of state, is determined by the expression a0 = √ nB ⁄ ρ0  ≈ 1500 m/sec.
One can expect that as the velocity of sound a0 increases, the results of the numerical calculations for a
compressible fluid must converge to the solution for an incompressible fluid. In Fig. 2, such a solution for a
weakly compressible fluid for an initial speed of sound of 20 a0 (30 km/sec) is marked by light points. The
initial velocity of the water is 150 m/sec. The required value of the velocity of sound is obtained by a formal
400-fold increase in the is enthropic exponent n in the equation of state of water. As is seen from the figure,
the coincidence of the results for an incompressible fluid and a compressible one is excellent. Good coinci-
dence occurs already for the velocity of sound equaling 10 a0. The analysis made speaks, on the one hand,
to the reliability of the calculation results and to the reliability of the algorithm. On the other hand, for a
weakly compressible fluid with an assigned initial velocity the Mach number is small and the results of cal-

TABLE 1. Dependence of the Parameters of the Hydraulic Gun on the Initial Velocity of the Fluid

U0, m/sec um δu M pm δp 4pm
 ⁄ um

2

25 12.16 1 0.2 36 3.5 0.974

50 11.9 3.3 0.38 33.42 10.5 0.944

75 11.55 5.9 0.57 30.74 17.6 0.922

100 11.2 9.3 0.76 28.65 23 0.914

150 10.58 13.8 1.06 25.12 32.6 0.898

200 10.1 17.9 1.34 23.04 38.3 0.903

250 9.64 21.5 1.61 21.26 43.03 0.915

300 9.29 24.35 1.86 20.43 45.3 0.947

350 8.96 27.03 2.09 19.2 48.55 0.957
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culations of an incompressible fluid and a compressible fluid coincide well. This means that the Mach num-
ber can be taken as a criterion for assessing account for the compressibility of a fluid.

Thus, for an incompressible fluid the results do not depend on the initial velocity of the fluid. For a
compressible fluid this dependence is substantial. The higher the initial velocity of the fluid, the greater the
difference in the parameters of the flow for an incompressible fluid and a compressible one. Disregarding the
fluid’s compressibility yields too low values of the velocity and the pressure. The character of the change in
the quantities is conveyed correctly. The Mach number calculated from the maximum velocity at the end of
the inflow can be taken as a criterion for the permissibility of application of the incompressible-fluid model.
When the Mach numbers are small, it is justified to disregard the compressibility of the fluid. When the
Mach numbers are comparable to unity, it is necessary to take into account the fluid’s compressibility.

NOTATION

a, velocity of sound; a0 = √ nB ⁄ ρ0 , velocity of sound at zero pressure; a1 = kL ln kF, parameter of the
nozzle; B = 304.5 MPa, n = 7.15, ρ0 = 103 kg/m3, constants in the equation of state of water in the Tate
form; Di±1 ⁄ 2, auxiliary combinations; F, cross-sectional area of the nozzle; f, dimensionless cross-sectional
area; G, auxiliary quantity; ±I, Riemann invariants; i, number of the grid node; kL, ratio of the length of the
water charge to the length of the nozzle; kF, ratio of the areas of the inlet and outlet cross sections of the
nozzle; L, length of the water charge; Le, length of the nozzle; M, Mach number; N, number of nodes of the
difference grid and number of the node on the front surface; p, pressure; t, time; ∆t, time step of the differ-
ence scheme; u, velocity; U0, initial velocity of the liquid; x, coordinate; y, function of the coordinate x; γ,
coefficient; δp and δu, deviations of the pressure and the velocity; ρ, density. Subscripts: e and in, outlet
(exit) and inlet of the nozzle; fr and r, front and rear surfaces of the water charge; i, number of the compu-
tational node of the grid; m, maximum value, re, rear surface of the water charge at the end of the inflow;
0, initial parameters.
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